【佳學(xué)基因檢測(cè)】表觀基因組、4D 核組和下一代神經(jīng)精神藥物基因組學(xué)
品牌基因檢測(cè)怎么樣排隊(duì)
分析神經(jīng)系統(tǒng)基因檢測(cè)位點(diǎn)的全面性與正確性,明白《Pharmacogenomics》在. 2015;16(14):1649-69.發(fā)表了一篇題目為《表觀基因組、4D 核組和下一代神經(jīng)精神藥物基因組學(xué)》人體基因信息解碼如何指導(dǎo)基因檢測(cè)的臨床研究文章。該研究由Gerald A Higgins, Ari Allyn-Feuer, Samuel Handelman, Wolfgang Sadee, Brian D Athey等完成。提出了4D核組學(xué)、下一代精神神經(jīng)藥物基因組學(xué)的方法和應(yīng)用,進(jìn)一步推進(jìn)神經(jīng)、精神科用藥指導(dǎo)向更全面、更正確的標(biāo)準(zhǔn)邁進(jìn)。
遺傳力、發(fā)病原因及正確治療臨床研究?jī)?nèi)容關(guān)鍵詞:
中樞神經(jīng)系統(tǒng),GWAS,等位基因失衡,生物時(shí)效性,候選基因,染色質(zhì)相互作用網(wǎng)絡(luò),全基因組關(guān)聯(lián)研究,長(zhǎng)非編碼RNA,非編碼基因變體,通路分析,藥物表觀基因組學(xué),精神藥物,超分辨顯微鏡,轉(zhuǎn)錄因子。
精神類(lèi)疾病用藥指導(dǎo)基因檢測(cè)臨床應(yīng)用結(jié)果
4D核組有可能使現(xiàn)在神經(jīng)精神藥物基因組學(xué)中遇難到的困難更容易得到解決。表觀基因組路線圖聯(lián)盟已經(jīng)證明了人類(lèi)基因組的非編碼區(qū)域在確定人類(lèi)表型中所起的關(guān)鍵作用。染色體構(gòu)象捕獲方法揭示了細(xì)胞核的 4D 組織結(jié)構(gòu),使遙遠(yuǎn)的調(diào)控元件之間的相互作用以周期性的方式接近空間。這些功能性相互作用有可能闡明以前未被認(rèn)識(shí)的神經(jīng)系統(tǒng)藥物反應(yīng)和副作用的機(jī)制。佳學(xué)基因解碼評(píng)估了可能揭示人類(lèi)大腦中新藥效學(xué)調(diào)控途徑的更新的進(jìn)展,以人類(lèi)表觀基因組的時(shí)空結(jié)構(gòu)為基礎(chǔ),為藥物基因組學(xué)研究開(kāi)辟的未來(lái)可用的新途徑。 GWAS;等位基因失衡;生物時(shí)效性;候選基因;染色質(zhì)相互作用網(wǎng)絡(luò);全基因組關(guān)聯(lián)研究;長(zhǎng)鏈非編碼 RNA;非編碼基因變體;通路分析;藥物表觀基因組學(xué);精神藥物;超分辨率顯微鏡;轉(zhuǎn)錄因子。
神經(jīng)及精神疾病及其并發(fā)征、合并征國(guó)際數(shù)據(jù)庫(kù)描述:
The 4D nucleome has the potential to render challenges in neuropsychiatric pharmacogenomics more tractable. The epigenome roadmap consortium has demonstrated the critical role that noncoding regions of the human genome play in determination of human phenotype. Chromosome conformation capture methods have revealed the 4D organization of the nucleus, bringing interactions between distant regulatory elements into close spatial proximity in a periodic manner. These functional interactions have the potential to elucidate mechanisms of CNS drug response and side effects that previously have been unrecognized. This perspective assesses recent advances likely to reveal novel pharmacodynamic regulatory pathways in human brain, charting a future new avenue of pharmacogenomics research, using the spatial and temporal architecture of the human epigenome as its foundation.Keywords: CNS; GWAS; allelic imbalance; biochronicity; candidate genes; chromatin interaction networks; genome-wide association studies; long noncoding RNAs; noncoding gene variants; pathway analysis; pharmacoepigenomics; psychotropic medications; super-resolution microscopy; transcription factors.
(責(zé)任編輯:佳學(xué)基因)